
VULNERABILITY SCANNER

���� �� �������������������������������������

EXTRA

V
ulnerability scanners are indispensable both
for vulnerability assessments and penetration
tests. One of the first things a tester does

when faced with a network is fire up a network
scanner or even several different ones. And, having
scanned a large network with a lot of open ports and
services he/she will end up with something like this:
see Figure 1.

This is however only the first step. The next steps
would usually be:

• Get a general idea of what is there. Are there any
problems that look exploitable? What are common
problems? What hosts are affected?

• Weed out the findings that are obviously bogus or
unimportant.

• Attempt exploitation to verify the findings. In case
of a penetration test this step will include exploiting,
establishing pivot points, escalating privileges,
gathering further information, and so on. In any
case it will involve exploiting vulnerabilities and
recording the results of the exploitation.

• Gather additional information if something is
missing

���������������������

����

������������� ����� ��������� ������� ��������� �� �������� ���

�������� �� ����� �� �������� ������ ����� �� ���� ���� ���

���������� �� �� � ��� ������ �� ������� �� ����� � ������ ���������

���� ��������� �� �� ��� ����� ������ ��������� � � ��������������

��� ��������� ���� ��� ����������� ������� � ��� ���� ��� �����

��

��

����

���� �� �������������������������������������

EXTRA

• Produce a human readable report including only
the relevant findings. The human readable part is
what makes it difficult. By that we mean a report
that a human, such as a security officer or a system
administrator will actually read it in full or easily find
the parts that are relevant to him/her without missing
anything important. A thousand page report where
findings are listed by host with tens of findings for
each of a hundred of hosts does not qualify as such.

Unfortunately, vulnerability scanners, such as Nessus
or OpenVAS, stop at producing the report. What you
do with this data and how you do it is up to you.

Having faced these problems regularly, we came up
with a solution. Enter MagicTree.

��������������������
In vulnerability assessments we deal with various kinds
of objects such hosts, ports, services, applications, and
vulnerabilities. Hosts have IP addresses, DNS names,
operating systems, and various other attributes. They
also have TCP/UDP ports, that may be open, closed
or filtered. Ports have services or protocols, and also
software listening on those ports. And all those might
have vulnerabilities.

You will notice that these objects are naturally
organized in a tree-like structure. This is the structure
that MagicTree uses to represent the data: see Figure 2.

The data can come from a variety of sources, including
vulnerability scanners, flat files and even manual
entry. In this case we are concerned with vulnerability
scanners. Figure 2 shows the data imported from an
XML file generated by Nessus.

Another way to look at the vulnerability data is by
type of the vulnerability. We want to see what kinds
of vulnerabilities were found (ordered by severity) and
which hosts are affected by each type of vulnerability.
This will give us the general idea of how bad (or how
good, depending on your point of view) things are,
and what can be exploited. Having this kind of view
we can proceed to exploiting individual vulnerabilities.
MagicTree lets you do just that.

MagicTree allows querying data in the tree using
XPath expressions. The data shown in Figure 3 is a
result of such a query. A number of useful queries,
such as this one, a pre-defined and stored in the query
repository. Users can save queries they define to the
repository and reuse them.

��������������
The tester’s next step will usually be exploiting or
verifying the discovered vulnerabilities. As an example
let’s consider anonymous FTP servers. In our scan,
several FTP servers that allow anonymous access were
discovered. We want to investigate those servers to see
what files are accessible. In addition to that we want
to run a password guessing attack on those servers to
try to get authenticated FTP access. Let’s also assume
that the test scope was set, we were given a list of
hosts that are critical and fragile, so no intrusive tests
should be performed on them. One of our anonymous
FTP servers is in the list, so we must exclude it from
password brute forcing attack.

In the list of findings we can select all Anonymous
FTP Server”findings. The table contains the sever IP
addresses and port numbers. One of the servers is

���

���

���

�������������������

VULNERABILITY SCANNER

���� �� �������������������������������������

EXTRA
out of bounds for us, so we control click on the row
corresponding to that server and de-select it.

First we are going to connect with FTP to each of
the servers and have a look around. We want to avoid
having to copy and paste the IP addresses and port
numbers, and then having to copy and paste the output
into the report.

In MagicTree, under the table of results, there is an
input field for the command line. We put in ftp $host

$port, select Environment input mode and click Run.
This will start one FTP command for each host and port
in the list. Next we can open console for each running
FTP session and look around.

When we terminate the FTP command, the console
window closes, but the command output is saved.
The output of all commands executed from MagicTree
can be included in the generated report. Of course,
commands that produced no useful output or were
executed by mistake can be removed.

In a similar way we can run a password bruteforcer,
such as hydra or medusa, feeding it the list of IP
addresses, or running one instance per host. Again, all
the output is retained by MagicTree and can be used in
reports.

����������������������������
The example above has shown some features related
to the execution of external commands. We saw
MagicTree launching a command-line FTP client,
and passing target specification in environment
variables, named after columns in the table view.
The commands were executed locally, in parallel
in small batches. Now we will consider slightly
more complicated example. Suppose you have just
scanned a bulk of class C networks using nmap in
fast mode and now want to do full port scan, but only
for hosts running web servers. We will want it to feed
large bulk of data to nmap and execute the scanner
on a remote host.

��������������������
First we need to mine our tree for IP addresses of hosts
having HTTP services open. One way to do it is to
manually find an one TCP/80 port and then running a
query to find similar nodes in the tree. This is done by
searching for 80 in the tree and click on Q2 button above
the tree. This button activates Query Wizard which builds
a query to select all nodes in the tree having the same
values in the two last nodes in the path (port=80 and
ipproto=tcp).

Another option is to find all ports where HTTP service
has been detected, plain or wrapped in SSL. The query
for doing the latter is provided in the repository, just
click on Repo tab, and find HTTP and HTTPS servers
query under ports tag. Double click on the query and
it will be automatically loaded and executed into the
table view.

���������������������
Command editor is located under the table containing
the query results. In the command editor we switch input
mode to Tabsep in $in file, and type the command:

sudo nmap -iL $in -sS -sV -n -vvv -p1-65535 -oX $out.xml”.

When we launch the command, MagicTree will create
a temporary file with the list of IP addresses and pass
it to nmap via $in parameter. The command will run
in background, detached from MagicTree, but you will
have access to the interactive console which comes
handy if you need enter password for sudo.

���

����������������������������������

��

���� �� �������������������������������������

EXTRA

After a command is launched, you can save the
project, quit MagicTree and go home. Later you can
open the project again and MagicTree will automatically
check the status of commands it has launched and pick
up its output files if the work is done.

������������������
MagicTree will retain the data the command outputs to the
console. Additionally, it provides special parameter $out. It
can be used in output file name parameters. In the above
example we have passed -oX $out.xml to nmap. This will let
MagicTree pick up the file produced by Nmap and store it.
You could have written -oA $out instead and have all kind of
nmap output stored in the tree, not only XML.

When the command finishes, you can browse the
list of output files and their content. For XML files, you
can click on Import button to import it back into the
tree.

Taking import of nmap XML as an example, newly
discovered ports will appear in the tree next to the ones
previously discovered by Nessus.

Some tools such as DnsEnum and WhatWeb natively
produce XML files in MagicTree format. As of time
of writing this article, MagicTree supported XML files
generated by Nessus, Nmap, Nikto, Acunetix, Burp,
W3AF, Qualys, and OpenVAS 3. Users can develop
XSLT transforms to support other tools that generate
XML. Output of commands incapable of producing
XML by themselves, can be imported into MagicTree by
creating a wrapper.

������������������������
Most likely you have already noticed User@host
input fields beneath Command. It is related to another
feature we would like to mention, remote command
execution. Everything we have already said about
running command from MagicTree – parameterization
via environment variables or $in, output files pickup,
XML file import, access to interactive console, detached
execution – will work if a command is executed
remotely. MagicTree uses no agents or third-party
software installed on the remote host, it just needs to be
able to login over SSH and find common *nix utilities.

To setup remote access, click on Push SSH Key
button. A script running in newly open terminal window
will generate a private SSH key (stored under ~/

.magictree) and push it into authorized keys of the
specified remote SSH server. How it looks like when I
configure MagicTree to work with remote BackTrack 5
VPS, from HackingMachines: (Figure 10). Pushing has
succeeded, so we can just enter root@bt42.mybt.co
in User@host and have the command executed
remotely.

��������������������
Another challenge in processing the vulnerability scanner
results is weeding out the findings that are useless,
unimportant or plain wrong. Those will include findings that
have no security impact and are no use to the client (stuff
like Traceroute information or Nessus scan information)
and false positives. Again MagicTree can help.

��

��������������

��

������������������

������ ���������� ��� ������� ������ ����� ���� �� ��� ���� ������

���������������������������

VULNERABILITY SCANNER

���� �� �������������������������������������

EXTRA

While deciding what is important and worth reporting
and what isn’t should be left to the human tester, the
process of marking the findings as important or not and
keeping only the important one in the final report, can
and should be made easier.

Let’s see how this can be done with MagicTree. We’ll
go back to the list of findings. Starting from the bottom,
where all the low risk problems are, we will select findings
we consider irrelevant and change their status to ignore.

The color of the table cells reflects the status. If we
don’t want to see findings marked as ignored in the list
at all, all we need to do is change the query, adding a
condition [@status!=’ignored’], and re-run it.

�����������������
After all this hard work sorting out and verifying the
findings we want a report to show to the customer.
The problem with the reports that vulnerability
scanners, such as Nessus, generate is that they are
difficult or impossible to edit and don’t allow for much
customization. MagicTree solves this problem, firstly
by producing reports in Microsoft Office or OpenOffic
Writer formats, so they are fully editable, and secondly
providing fully customizable templates (also in Word
and OpenOffice format), that can be modified to your
liking. The templates use the same XPath expression
syntax as the queries, so any data in the tree can be
included in the report.

Let’s start with one of the standard report templates
that comes with MagicTree. Selecting Report->
Generate Report from the menu, choosing summary-
of-findings-cross-referenced.odt template and clicking
on the Generate Report button produces the report:
(Figure 12).

The first section – Findings and Recommendations –
lists the findings grouping them by type, so Anonymous
FTP is one finding containing the list of affected hosts
and Nessus plugin output for each host. The second
section – Test Details – contains per host data including
the list of findings per host cross-referenced to the first
section, and the listing of executed commands. Our
FTP commands and brute-forcing sessions end up in
this last section: (Figure 13).

In many cases the output of the vulnerability scanner
is used during the test but does not make it into the
final report, that is custom-written. Still there is often a
need to include bulky data, such as, for example, a list
of hosts vulnerable to a certain problem, or those that
were successfully exploited. Using MagicTree query
to list the data and then copying the table output and
pasting it into the report can come helpful in this case.

����������
MagicTree simplifies analyzing and managing large bulks
of data that vulnerability scanners produce. Automating
the tasks that when done manually are boring and time-
consuming, MagicTree leaves the penetration tester free
to do what he or she is best at – real hacking.

���

���� ����������� ���
��������� �����������
�������������������������������

������������ ���� ���� ���������

��� ��������� ���� ���� �����������

��� ����������� ����� ����� �����

�������� ��� ������������ ��������

���� ���� ����� ��� ������� �����

������������ ��� ���� ��������������

������������������������������������� ��������������������������

���

����� ���������
���������� ��� ���������� ��� ���������� ��� ��� �������� ��� �����

���� ���� ������� ��� ������� ���� ��� �� ������������� ��� ��� �����

���

��� ���������� ��� ���������� ���� ��������� ����� ���������

��������� ���������� ���� ��� ������� ����������� ����� �������

��������������������������� ������ ����� ��������� ����� ����

���

��������� �������������� ��� ���������� ��� �������

�����������������������������

�� ������ ������������� ��� ������ ��� ������������������������

��

���� ����� ������������ ������ ��������� ���� ���������� ����

����������������

